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Abstract. The straw return practice is essential to soil organic matter (SOM) accumulation in the black soil area with high 

carbon sequestration potential. However, due to lacking accurate spatial distribution of straw return, few studies took straw 

return as a variable to carry out rigorous research on the impact of straw return on SOM variation on a regional scale. Based 

on soil samples and 16 environmental covariates including a 10-meter-resolution straw return amount, the study mapped the 

spatial distributions of SOM in 2006 and 2018 by random forest (RF) and evaluated the effects of the interaction of soil 15 

properties, land use and straw return on SOM spatial-temporal variation. The results show that in the context of the straw 

returning, the mean SOM content increased from 18.93 g kg−1 to 20.84 g kg−1 during 2006–2018. And 74.49 % of the region 

had a significant increase (maximum: 24.41 g kg−1) of SOM. The severest SOM loss occurred in the northwest due to the 

light texture and the transition from paddy fields to dryland. Nevertheless, for areas from paddy fields to dryland, the SOM 

loss decreased with the increased amount of straw return. The SOM even increased by 1.84 g kg−1 when the straw return 20 

amount reached 60–100 %. In addition, soil with higher initial SOM and sand content had a lower response to straw return. 

The study revealed that straw return is beneficial to carbon sink in farmland and is a better way to prevent a carbon source 

caused by the change of paddy field to dryland. 

1 Introduction 

Soil organic matter (SOM) profoundly impacts carbon contents, cationic exchange capacity, water holding capacity, soil 25 

fertility, microorganisms, and soil structure (Ciais et al., 2011). Therefore, the SOM/ soil organic carbon (SOC) contents 

spatial-temporal variation was significant to global warming, soil quality, and ecosystem health (Ciais et al., 2011; Viscarra 

Rossel et al., 2014; Ondrasek et al., 2019), especially in black soil with rich SOM (Lugato et al., 2014; Amelung et al., 

2020b). Recently, poor management practices have resulted in SOM loss in the black soil area. Previous studies have 

reported that soil fertility decreased in the black soil area in North America and Eastern Europe (Russell et al., 2005; Fabrizzi 30 
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et al., 2003). Meanwhile, a similar decline trend occurred in the black soil area in Northeast China (Wang et al., 2018). 

Therefore, rapidly and accurately quantifying the heterogeneity of SOM in the black soil region is necessary.  

Conventional mapping involves data collection, field investigation, interpretation, field inspection, calibration, and mapping. 

It is time-consuming and laborious and thus cannot satisfy the growing demand for the latest soil spatial information. Jenny 

(1994) described the soil as follows: 𝑠𝑜𝑖𝑙 = 𝑓 (𝑐𝑙𝑖𝑚𝑎𝑡𝑒, 𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚, 𝑟𝑒𝑙𝑖𝑒𝑓, 𝑝𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑎𝑔𝑒)  (Jenny, 1994). 35 

McBratney et al. (2003) proposed the SCORPAN function model and described the soil as follows: 𝑠𝑜𝑖𝑙 =

𝑓(𝑝𝑟𝑖𝑜𝑟 𝑠𝑜𝑖𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑐𝑙𝑖𝑚𝑎𝑡𝑒, 𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚, 𝑟𝑒𝑙𝑖𝑒𝑓, 𝑝𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑎𝑔𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) (Mcbratney et al., 2003). Based 

on the soil-forming theory, digital soil mapping (DSM) offers a promising solution for predicting soil properties with high 

precision and tremendous speed (Hengl et al., 2015; Dou et al., 2019; Liang et al., 2019; Schulze and Schütte, 2020). Thus, 

the DSM method with environmental factors can accurately quantify the SOM spatial-temporal variation and measure the 40 

relationship between environment covariates and SOM variation on a regional scale (Schillaci et al., 2017; Song et al., 2018; 

Zhou et al., 2019). 

Nowadays, SOM variation under different land-use change and management practices has attracted increasing attention (Pan 

et al., 2010; Muñoz-Rojas et al., 2015). Some studies proposed to reduce SOC loss through straw return (West and Post, 

2002; Liu et al., 2014; Wang et al., 2015; Amelung et al., 2020b). Conversely, previous scholars have reported the influence 45 

of straw return on the SOM accumulation is non-significant (Pittelkow et al., 2015; Poeplau et al., 2015; Powlson et al., 

2011). The opposite result may be due to the various study areas with different soil properties, initial carbon content, land-

use change, and straw return. In addition, these studies were mainly conducted on a field scale. On a regional scale, it is 

mostly through literature citation and policy enumeration to analyze the impact of straw return on SOM variation (Han et al., 

2016; Zheng et al., 2015). However, few studies took the straw return amount as a variable to implement rigorous research 50 

on the effect of straw return on SOM variation due to lacking accurate spatial distribution of straw return.  

In the study, the overall objective was to take a typical black soil area with long-term straw return demonstration as a case to 

quantify the relationship between SOM accumulation and straw return on a regional scale. The specific objectives were of 

three folds, which include: a) evaluate the performance of RF models with different groups of factors to develop the most 

robust model; b) analyze the spatial-temporal variation of SOM during 2006–2018; c) discuss the effects of straw return on 55 

SOM variation under different soil types, soil texture and land-use change. 

2 Materials and methods 

2.1 Study region 

The study was conducted in Lishu County, Jilin Province. The average elevation is 160 m (Fig. 1). The annual mean 

precipitation and annual mean temperature are 6.5 ℃ and 553.5 mm, respectively. The mean annual sunshine duration is 60 

2,541.4 hours. The region’s climate is classified as a semi-humid temperature. The soil parent material in Lishu County 

gradually changes from most weathered rocks and red sediments in the east to the loess-like sediment and loessal sub-sandy 
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soil in the west, resulting in the regularity of soil type distribution. Arenosols, Anthrosols, Phaezems, Luvisols, Cambisols, 

and Chernozems are the main soil types (World Reference Base for Soil Resources). Rainfall is the only source of water for 

crops growing in this region. In addition, a research base was established in Lishu County, Jilin Province, China, in 2007, 65 

and the straw return technology was popularized continually. 

 

Figure 1: Schematic diagram of the geographical position of the study area and sampling sites. The background is from © 

Google Earth and the distribution of elevation was derived from the Resource and Environment Data Could Platform. 

2.2 Soil data 70 

The straw return measure has been implemented in Lishu County since 2007, so the SOM in 2006 and 2018 were selected to 

quantify the SOM change under the straw return background. The local landform and soil type determined the sampling 

locations. The surface (0–20 cm) soil samples were collected, and the corresponding longitude and latitude were also 

documented. The prediction error caused by the differences in sampling designs for the years 2006 and 2018 was not 

considered to make full use of legacy soil data (Ou et al., 2017; Sun et al., 2017; Nguemezi et al., 2021). 75 

A portion of 3 kg of soil at each sampling site was air-dried. During the process of air drying, the soil samples were 

frequently turned over and the intrusions outside the soil were removed. Sun exposure, acid, alkali, and dust pollution were 

strictly prohibited. After air drying and grinding, the soil samples were thoroughly mixed and passed through a 0.25 mm 

mesh to determine SOM concentration with the wet oxidation method (Liu et al., 1996). 
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2.3 Environmental covariates 80 

We collect the available grids on the website as factors. A 30 m resolution digital elevation model (DEM) was derived from 

the Resource and Environment Data Could Platform. Other terrain variables were calculated from DEM in the SAGA GIS  

software (Conrad et al., 2015), including terrain relief (TR), topographic wetness index (TWI), slope, aspect, profile 

curvature (PRC), multi-resolution valley bottom flatness (MrVBF) and plan curvature (PLC). Landsat 5 TM and Landsat 8 

TM were used to calculate the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) in 85 

2006 and 2018. Huang et al. (2020) offered crop residue coverage (CRC) at a 10 m resolution in 2018 (Huang et al., 2020). 

The study used the Normalized difference tillage Index (NDTI) and Simple Tillage index (STI) extracted from Sentinel-2A 

images and observed data to predict CRC. The accuracy R2 of the model is 0.84. Lishu County has implemented the straw 

return policy since 2007. Therefore, the amount of straw return in 2006 can be regarded as 0. 

The resolution of land-use types in 2005 and 2018 is 30 m. The land-use types in 2005 and 2018 are consistent with six 90 

major classes and 25 subclasses. An electronic version of soil type map in Lishu County, offered by the Agricultural 

Extension Station in Lishu County, was digitized and delineated for this study. The map for soil clay content at 250 m 

resolution was obtained from SoilGrids250m products (Hengl et al., 2015) in International Soil Reference and Information 

Center. 

The National Earth System Science Data Center, National Science & Technology Infrastructure of China provided annual 95 

mean precipitation (AMP) in 2006 and 2018. After multivariate regression analysis of 16 variables (Table 1) and SOM 

content, the Variance Inflation Factor (VIF) of independent variables were less than five, indicating multicollinearity did not 

exist among independent variables. 

These environmental covariates (Table 1) were resampled to 30 m using the bilinear method in ArcGIS 10.2. 

Table 1 Environmental covariates used for predicting soil organic matter (SOM). 100 

Theme 
Environmental 

factors 

Original 

resolution 
Source 

Geographical 

coordinate 
Y 30 m   

Terrain DEM, m 30 m http://www.resdc.cn/ 

 Slope 30 m Calculated from DEM 

 Aspect 30 m Calculated from DEM 

 TR 30 m Calculated from DEM 

 TWI 30 m Calculated from DEM 

 PLC 30 m Calculated from DEM 

 PRC 30 m Calculated from DEM 

 MrVBF 30 m Calculated from DEM 
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Vegetation NDVI 30 m Landsat 5 and Landsat 8 

 EVI 30 m Landsat 5 and Landsat 8 

 CRC (2018) 30 m Liu et al., (2020) 

Soil 
Land-use types 

2005 
30 m http://www.resdc.cn/ 

 
Land-use types 

2018 
30 m http://www.resdc.cn/ 

 Soil type 1:100, 000 the Second National Soil Survey 

 
Soil clay 

content, % 
250 m https://soilgrids.org/ 

Climate AMP, mm 1000 m http://www.geodata.cn/ 

Notes: Y, latitude; DEM, digital elevation model, m; TR, terrain relief index; TWI, topographic wetness index; PLC, plan 

curvature; PRC: profile curvature; MrVBF, multi-resolution valley bottom flatness; NDVI, normalized difference vegetation 

index; EVI, enhanced vegetation Index; CRC, crop residue coverage; AMP, annual mean precipitation, mm. 

2.4 Spatial predictive modeling 

2.4.1 Random Forest 105 

Many studies successfully predicted various soil nutrient content by using RF model (Wiesmeier et al., 2011; Guo et al., 

2015; Zhang et al., 2017). First proposed by Breiman in 2001, RF (Breiman, 2001) is a tree-based ensemble model. 

Combined with the idea of feature selection, the approach can increase the diversity of individual decision trees and improve 

the generalization ability of the final RF model. We used ten-fold cross-validation to optimize the parameters of RF.  

The study took SOM content and various environmental factors (Table 1) as the dependent and independent variables to 110 

build two RF models: consider all the variables as predictors (RF-all); consider the environment variables without latitude as 

predictors (RF- (all-Y)). 

2.4.2 Geographical detector (GE) 

GE (Wang and Xu, 2017) is effective to quantify the spatial heterogeneity of attributes between layers. The method includes 

factor, interaction, risk, and ecological detector. We used the factor and interaction detector to explore the driving factors for 115 

SOM prediction in the study. In the factor detector, the q value (from 0 to 1) and whether it passes the significance test was 

given. The q value is proportional to the effect of the independent variable on the dependent variable. The interaction 

detector obtained five different results by comparing the q values (q1, q2) for each of two factors with the q value (q3) of the 

two factors interaction, as presented in Table 2.  

Table 2 Interaction judgment in Geographical detector. 120 
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Judgment Interaction 

q3<Min (q1, q2) Nonlinear weakening 

Min(q1, q2)<q3<Max(q1) Single factor nonlinear weakening 

q3>Max (q1, q2) Double factor enhancement 

q3=q1+q2 Independent 

q3>q1+q2 Nonlinear enhancement 

 

2.4.3 Model assessment 

Independent verification was used to evaluate the performance of the model. The Lins' Concordance Correlation Coefficient 

(CC) and the root mean squared error (RMSE) were as evaluation metrics. The data was first randomly divided into a 

modelling set and a validation set according to the 7:3 ratio. In the modelling set, ten-fold cross-validation was used to obtain 125 

the best parameters of the model through RMSE as an index. The calculation of RMSE and CC is as follows: 

𝑅𝑀𝑆𝐸 = (1 𝑛⁄ × ∑ (𝑝𝑖 − 𝑜𝑖)2𝑛
𝑖=1 )1 2⁄  ,          (1) 

𝐶𝐶 = 2𝑟𝜎p𝜎o (𝜎𝑝
2 + 𝜎o

2 + (𝑝̂𝑖 − 𝑜̂𝑖)2)⁄  ,          (2) 

where 𝑝𝑖  and  𝑜𝑖  are the predicted value and observed value, respectively.  𝑝̂𝑖  and 𝑜̂𝑖  are the average value of all predictions 

and observations, respectively. 𝑛  is the number of soil samples. 𝜎𝑝
2  is the variances of predicted values and 𝜎o

2  is the 130 

variances of measured values. r is the correlation coefficient of predictions and observations. Model evaluation, descriptive 

analysis, and variance analysis were realized in R 4.0.2 (R Core Team, 2020).  

3 Results and discussion 

3.1 Descriptive Statistics of SOM data 

As shown in Table 3, from 2006 to 2018, the average SOM content increased from 18.93 g kg−1 to 20.84 g kg−1 and the 135 

coefficient of variations (CV) rose slightly from 0.33 to 0.38. The CVs indicated moderate variation (Cambardella et al., 

1994). The ascending CV could be attributed to more active human activities, such as popularized straw return technology in 

Lishu County, which is consistent with recent studies (Fan et al., 2020; Hu et al., 2014). 

Table 3 Statistical description of SOM in 2006 and 2018 in Lishu County. 

 Year Mean SD Min Max Skew Kurtosis CV 

SOM 

(g kg−1) 

2006 18.93 6.20 6.40 39.50 0.29 −0.45 0.33 

2018 20.84 7.82 2.10 64.26 0.29 1.29 0.38 

Notes: SOM, soil organic matter, g kg-1; SD, standard deviation; CV, coefficient of variation. 140 
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3.2 Model performance 

Table 4 shows that the RF-all (CC = 0.59, RMSE = 4.54 g kg−1, took 2006 as example) (Fig. 2) performed better than RF- 

(all-Y) did (CC = 0.55, RMSE = 4.63 g kg−1). The result indicated geographical coordinates were significant for SOM 

mapping. Compared with a RF-all model to predict nematode worm distribution, Ploton et al. (2020) obtained similar results 

by using a RF-XY model because the RF-all model mainly depends on geographic proximity (Van Den Hoogen et al., 2019). 145 

However, studies seldom took geographic coordinates as variables for SOM prediction. Further research should consider the 

importance of geographic coordinates in DSM. 

Table 4 The performance of the random forest model.  

Methods 
2006 2018 

CC RMSE (g kg−1) CC RMSE (g kg−1) 

RF-all 
Calibration 0.55 5.04 0.44 6.99 

Validation 0.59 4.54 0.54 5.38 

RF- (all-Y) 
Calibration 0.50 5.22 0.38 7.18 

Validation 0.55 4.63 0.47 5.55 

Notes: RF-all: consider all the variables as predictors; RF- (all-Y), consider the environment variables without latitude as 

predictors; CC, Lins' Concordance Correlation Coefficient; RMSE, root mean squared error. 150 

 

Figure 2: Performances of the random forest with all environmental covariates (RF-all) on validation data in 2006 (a) and 

2018 (b). RMSE, root mean squared error; CC, Lins' Concordance Correlation Coefficient; SOM, soil organic matter. 
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3.3 Importance of driving factors on SOM spatial distribution 

As Fig. 3a and c prevented, the relative importance of environmental factors obtained from the RF and GE methods was 155 

comparable, proving the feasibility of the two methods. The geographical coordinates, soil type, precipitation, clay content, 

DEM, and MrVBF play key roles in SOM prediction (the relative importance > 10 %). The relative importance of the other 

factors was almost less than 5 %. Moreover, straw return was an essential factor in SOM spatial distribution.  

As Fig. 3b and d presented, the explanatory strength of 16 variables’ interaction in pairs was stronger than that of the single 

factor through nonlinear enhancement or double factor enhancement (Enhancement, bi). This finding proved that the 160 

complex interaction among different influencing factors led to the spatial distribution pattern of SOM. Fig. 3b and d also 

proved that y, AMP, DEM, MrVBF, Soil type, and Clay have the greatest influence on SOM. 

 

Figure 3: Relative Variables importance (a), (c) and interaction (b), (d) derived from the random forest and geographic 

detectors (GE) for soil organic matter (SOM) in 2006 and 2018. Notes: y, latitude; DEM, digital elevation model, m; TR, 165 
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terrain relief index; TWI, topographic wetness index; PLC, plan curvature; PRC: profile curvature; MrVBF, multi-resolution 

valley bottom flatness; NDVI, normalized difference vegetation index; EVI, enhanced vegetation Index; CRC, crop residue 

coverage; AMP, annual mean precipitation, mm. 

3.4 Spatial variation of SOM over time 

Fig. 4 presents the spatial distributions of SOM (30 m resolution) in 2006 and 2018. The general spatial pattern was clear: 170 

the SOM decreased from southeast to northwest in Lishu County each year. In 2006, SOM concentration was highest in the 

south of Lishu County (22–28 g kg−1) and lowest in the western part (under 12 g kg−1). The highest SOM content was 

concentrated in the middle and east of the study area in 2018, while low SOM content (0–12 g kg−1) occupied a tiny area.  

 

Figure 4: Prediction map of soil organic matter (SOM) in 2006 (a), 2018 (b), and the change (c) over the same period in the 175 

study area. 
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The overall trend of SOM content was on the rise from 2006 to 2018. Consistent with the distribution of high straw return 

amount (0.3–1) (Fig. 5a), the SOM content in 74.49 % areas of Lishu County displayed a significant increasing trend, 

especially in the eastern part of the county (Fig. 4c) with a maximum increase of 24.41 g kg−1. Many studies have revealed 

that straw return contributes to carbon sink due to increased microbial biomass and biological activity (Han et al., 2016; 180 

Amelung et al., 2020a; Berhane et al., 2020). 

 

Figure 5: The variation of straw returning content (CRC) during 2006–2018 (a) and soil type (b) in the study area. 

The decrease of SOM mainly occurred in the northwest and south of Lishu County. The SOM reduction in southern Lishu 

County happened to be the area with the high initial SOM concentration (2006) (Fig. 4c). Consistent with previous research, 185 

the reduction was severe in areas with initial higher concentrations of SOC (Zhou et al., 2019). In the northwest corner, the 

decrease of SOM was mainly distributed on the Arenosols and Anthrosols with a marked decline of 12.70 g kg−1 (Figs. 4c, 

5b). The phenomenon may be related to the small amount of straw return, light-texture soil, and the change that paddy land 

to dryland. 

3.5 Effects of straw return on SOM variation 190 

Fig. 6 presents SOM increased by 0.76, 1.99, 2.66, and 3.08 g kg−1 when the straw return amount was 0–15 %, 15–30 %, 30–

60 %, and 60–100 %, respectively. This result proved the SOM increment was proportional to the straw return amount. 

Previous study revealed that the effect of straw return on SOM content was closely linked to soil properties, initial SOM 

content, land-use change, and the straw return amount (Berhane et al., 2020). Therefore, variance analysis was conducted to 

explore the effects of straw return on SOM variation under different land-use change, soil types, and soil texture. 195 
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Figure 6: The soil organic matter (SOM) change for different straw returning content. 

3.5.1 Effects of the straw return on SOM variation under different soil types 

According to Fig. 7, for Anthrosols, Cambisols, and Chernozems, SOM increment was proportionate to the straw return 

amount. For Luvisols and Phaezems, SOM variation showed a decreasing trend with the boosted straw return amount. This 200 

phenomenon is relevant to the initial SOM contents. As displayed in Fig. 8, the initial SOM contents were lower in 

Anthrosols, Cambisols, and Chernozems and higher in Luvisols, and Phaezems. Berhane et al. (2020) claimed that regardless 

of the soil type, the higher the initial SOC content, the lower the response of SOC change to carbon input. Li et al. (2018) 

concluded that Phaezems with the highest initial SOM content had the lowest response rate to fertilization (Li et al., 2018). A 

possible explanation for this might be that soils with low initial SOM are far away from their saturation levels and thus have 205 

a greater potential for carbon sequestration. Except for the SOM loss that occurred in Arenosols and Anthrosols, the changes 

of SOM under other soil types were almost positive (Fig. 7). The result verified that the degradation of Arenosols and 

Anthrosols resulted in the SOM reduction due to the light-texture soil and land-use change from the paddy land to dryland, 

respectively. 
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 210 

Figure 7: The soil organic matter (SOM) change for different straw returning content under soil type 

 

Figure 8: Initial soil organic matter (SOM) content (2006) for soil type 
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3.5.2 Effects of straw return on SOM variation under different soil texture 

With the straw return amount increasing, SOM first increased and then decreased for soil with low clay content (Fig. 9). 215 

Nevertheless, SOM increases with the boosted straw return amount in soils with high and medium clay contents (Fig. 9), 

indicating that clay content was directly proportional to the response of SOM increment to straw return. The findings are 

consistent with previous studies that straw return leads to the highest carbon chelation under the high clay content (Xia et al., 

2018). One possible explanation for this observation was soils with higher clay content have greater potential to store 

organic carbon (Li et al., 2020), so the SOM accumulation in clayey soils is more responsive to straw return. Moreover, the 220 

SOM increment under sandy soil declined when the straw return amount was 60–100 %, which was because sandy soil 

cannot be protected by mineral particles (Xia et al., 2018) and is more susceptible to the influence of microorganisms. 

 

Figure 9: The soil organic matter (SOM) change for different straw returning content under soil texture. 

3.5.3 Effects of straw return on SOM variation under different land-use change 225 

The study considered only two kinds of land-use change: a) the change from dryland to paddy land; b) the change from 

paddy land to dryland because the crop area accounted for over 70 % of the total sown area in Lishu County and all the 

samples were taken from farmland. Variance analysis was carried out for the SOM variation in the two kinds of land-use 

change under different straw return amounts. As shown in Fig. 10, the SOM increment increases with the boosted straw 

return amount under the change from dryland to paddy field. From paddy to dry land, the SOM dropped by 0.59 g kg−1 when 230 

the straw return amount was 0–15 %. However, with the increase in the straw return amount, the SOM loss gradually 

decreased. Even the SOM increased by 1.84 g kg−1 when the straw return amount was 60–100 %, indicating that straw return 

can reverse the carbon loss caused by the transformation of paddy to dryland. Previous studies have found that due to the 

transformation from anaerobic to aerobic, the conversion of paddy to dry land will cause carbon loss (Wang et al., 2014; 

Nishimura et al., 2008; Li et al., 2016). Some research pointed that we can reduce the carbon loss by rewetting (Driessen et 235 

al., 2000) or cultivation of paddy fields continuously (Chen et al., 2017). The study pointed out that straw return is a way to 
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prevent a C source caused by the change of the paddy field to dryland and can be carried out after that paddy is converted to 

dryland or when paddy is fallow. 

 

Figure 10: The soil organic matter (SOM) change for different straw returning content when paddy land change to dryland. 240 

4 Conclusion 

The study estimated the surface SOM content and SOM variation between 2006 and 2018 by the RF model, quantified the 

spatial relationship between measured SOM and predictors and further explored the effect of the interaction of soil properties, 

land use and straw return on SOM change. The results of the study were as follows: 

(1) The RF model with all predictors (CC = 0.59, RMSE = 4.54 g kg−1 in 2006) performed better than that with all predictors 245 

except for geographical coordinates did (CC = 0.55, RMSE = 4.63 g kg−1) in both 2006 and 2018. The result indicated 

geographical coordinates were significant for SOM mapping.  

(2) The SOM contents for both periods decreased from the southeast to the northwest. For temporal variation, the SOM in 

74.49 % of areas of Lishu County existed an apparent upward trend, especially in the eastern of the county with a maximum 

increase of 24.41 g kg−1. The northwest and south corners of the study area aggregated the SOM loss, especially in the 250 

northwest with a significant decline of 12.70 g kg−1. 

(3) Straw return played the main role in SOM variation. SOM increased by 0.76, 1.99, 2.66, and 3.08 g kg−1 with straw return 

amount of 0–15 %, 15–30 %, 30–60 %, and 60–100 %. The response rate of SOM to the amount of straw return was 

inversely proportional to the initial SOM and the sand contents.  

The study revealed that straw return is beneficial to carbon sink in farmland. This article can provide a significant reference 255 

for conservation tillage to be extended to the entire black soil region. 
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